
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5951 235

A Study on Agile Methodologies

Anupama Kaushik

Assistant Professor, Department of IT, Maharaja Surajmal Institute of Technology, New Delhi, India

Abstract: Now-a-days the software development environment is very challenging. Organizations are constantly

changing their software requirements to adjust with new environment. They have also molded themselves to satisfy the

demand for fast delivery of software products as well as for accepting changing requirements. In this scenario,

traditional software development methods fail to meet up these requirements. Though traditional software development

methodologies, such as life cycle models and object oriented approaches, continue to dominate the systems

development few decades. Agile software development brings its own set of novel challenges that must be addressed to

satisfy the customer through early and continuous delivery of the valuable software. This paper discusses three of the

famous agile software development methodologies i.e. Extreme Programming, SCRUM and Feature Driven

Development.

Keywords: Traditional software development; Agile software development; Extreme Programming; SCRUM; Feature
driven development.

I. INTRODUCTION

A few decades back traditional software development

dominated the software industry. But now-a-days due to

ever changing customer demand and changing

technologies, these traditional software development fails

the customer satisfaction. The issue of how software

development should be done in order to deliver faster,

better, cheaper and customer satisfactory solutions have

been discussed in software engineering circles for decades.
There have been many studies and suggestion in

improving the development process. Recently, this has

paved a way to a new software development method called

Agile Software Development. This paper discusses the

migration towards agile movement and reviews the

existing agile methodologies.

II. BACKGROUND

Agile software development (ASD) is a major paradigm,

in field of software engineering which has been widely
adopted by the industry, and much research, publications

have conducted on agile development methodologies over

the past decade. Its various principles have emerged from

the traditional software development principles and

various experiences based on the successes and failures of

software projects.

Agile Software Development emerged in February 2001

when a group of software consultants signed the Agile

Software Development Manifesto.

This agile manifesto [1] states the main focus of the agile

development as the following:

1) Individuals and interactions over processes and tools.

2) Working software over comprehensive documentation.

3) Customer collaboration over contract negotiation.

4) Responding to change over following a plan.

The previous four values have been further defined by

twelve principles: [2]

 Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

 Welcome changing requirements, even late in

development. Agile processes tackle change for the

customer's competitive advantage.

 Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the
shorter timescale.

 Business people and developers must work together

daily throughout the project.

 Build projects around motivated individuals. Give

them the environment and support they need, and trust

them to get the job done.

 The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The
sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good

design enhances agility.

 Simplicity--the art of maximizing the amount of work

not done--is essential.

 The best architectures, requirements, and designs

emerge from self-organizing teams.

 At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

Agile methods focus on the challenges of unpredictability
of the real world by relying on people and their creativity

rather than processes [3]. The main theme in agile

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5951 236

methods is to promote and speed up responses to changing

environments, requirements and meeting the deadlines.

There are a number of agile software development

methods. Methods for agile software development

represent a set of practices for software development that
have been created by experienced people [3]. The most

common methods are extreme Programming (XP) [4],

Dynamic Software Development Method (DSDM) [5],

Scrum [6], Crystal [7] and Feature Driven Development

(FDD) [8].

All these methods focus on customer satisfaction through

continues delivery of software. This is achieved by having

short iterations in the development process. The iterations

focus on timely delivery of working code that provides

substantial value to the customer.

III. AGILE PROCESSES

Agile Software Development Methodology is currently

widely in use due to its characteristics of rapid software

development and accommodation to changing requirement

at any level of development [9].

A. Extreme Programming (XP) [11]:

Extreme Programming (XP) has evolved from the

problems caused by the long development cycles of

traditional development models [10]. The life cycle of XP

consists of five phases: Exploration, Planning, Iterations to
Release, Productionizing, Maintenance and Death as

shown in Fig. 1 [12].

Fig.1 Extreme programming

In the Exploration phase, the customers write out the

story cards that they wish to be included in the first

release. Each story card describes a feature to be added

into the program. At the same time the project team

familiarize themselves with the tools, technology and

practices they will be using in the project. The technology

to be used will be tested and the architecture possibilities

for the system are explored by building a prototype of the
system. The exploration phase takes between a few weeks

to a few months, depending largely on how familiar the

technology is to the programmers.

The Planning phase sets the priority order for the stories

and an agreement of the contents of the first small release

is made. The programmers first estimate how much effort

each story requires and the schedule is then agreed upon.

The time span of the schedule of the first release does not
normally exceed two months. The planning phase itself

takes a couple of days.

The Iterations to release phase includes several iterations

of the systems before the first release. The schedule set in

the planning stage is broken down to a number of

iterations and each take one to four weeks to implement.

The first iteration creates a system with the architecture of

the whole system. This is achieved by selecting the stories

that will enforce building the structure for the whole

system. The customer decides the stories to be selected for
each iteration. The functional tests created by the customer

are run at the end of every iteration. At the end of the last

iteration the system is ready for production.

The Productionizing phase requires extra testing and

checking of the performance of the system before the

system can be released to the customer. At this phase, the

team may find new changes and the decision will then be

made if they should be included in the current release.

During this phase, the iterations may take from three

weeks to one week. The postponed ideas and suggestions

are documented for later implementation during the
maintenance phase.

After the first release is productionized for customer use,

the XP project must both keep the system in the

production running while also producing new iterations. In

order to do this, the Maintenance phase requires an effort

also for customer support tasks. Thus, the development

velocity may decelerate after the system is in production.

The maintenance phase may require incorporating new

people into the team and changing the team structure.

The Death phase is when the customer needs are all

satisfied and no more stories are left to be implemented.

This is the time in the XP process when the necessary

documentation of the system is finally done and no more

changes to the architecture, design or code are made.

Death may also occur if the system is not delivering the

desired outcomes, or if it becomes too expensive for

further development.

B. SCRUM [11]

The term 'scrum' originally derives from a strategy in the

game of rugby where it denotes "getting an out-of play
ball back into the game" with teamwork [13].

The Scrum approach has been developed for managing the

systems development process. It is an empirical approach

applying the ideas of industrial process control theory to

systems development resulting in an approach that

reintroduces the ideas of flexibility, adaptability and

productivity [13]. It does not define any specific software

development techniques for the implementation phase.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5951 237

Scrum concentrates on how the team members should

function in order to produce the system flexibly in a

constantly changing environment. Scrum process includes

three phases: pre-game, development and post-game as

shown in Fig.2.

Fig. 2 Scrum Process

In the following, the Scrum phases are introduced

according to Schwaber [11] [13] [14].

The pre-game phase includes two sub-phases: Planning

and Architecture/High level design.

Planning includes the definition of the system being

developed, about the project team, tools and other

resources, risk assessment and controlling issues, training

needs and verification management approval. A Product

Backlog list is created containing all the requirements that

are currently known. The requirements can originate from

the customer, sales and marketing division, customer

support or software developers. The requirements are
prioritized and the effort needed for their implementation

is estimated. The product Backlog list is constantly

updated with new and more detailed items, as well as with

more accurate estimations and new priority orders. At

every iteration, the updated product Backlog is reviewed

by the Scrum Team(s) so as to gain their commitment for

the next iteration.

In the architecture phase, the high level design of the

system including the architecture is planned based on the

current items in the Product Backlog. In case of an

enhancement to an existing system, the changes needed for

implementing the Backlog items are identified along with

the problems they may cause. A design review meeting is
held to go over the proposals for the implementation and

decisions are made on the basis of this review. In addition,

preliminary plans for the contents of releases are prepared.

The development phase (also called the game phase) is

the agile part of the Scrum approach. This phase is treated

as a "black box" where the unpredictable is expected. The

different environmental and technical variables (such as

time frame, quality, requirements, resources,

implementation technologies and tools, and even

development methods) identified in Scrum, which may

change during the process, are observed and controlled

through various Scrum practices. Rather than taking these

matters into consideration only at the beginning of the

software development project, Scrum aims at controlling
them constantly in order to be able to flexibly adapt to the

changes.

C. Feature Driven Development (FDD)[11]

Feature Driven Development (FDD) is an agile and

adaptive approach for developing systems. The FDD

approach does not cover the entire software development

process, but rather focuses on the design and building

phases [8]. However, it has been designed to work with

the other activities of a software development project [8]

and does not require any specific process model to be
used. The FDD approach embodies iterative development

with the best practices found to be effective in industry. It

emphasis quality aspects throughout the process and

includes frequent and tangible deliveries, along with

accurate monitoring of the progress of the project.

FDD consists of five sequential processes and provides the

methods, techniques and guidelines needed by the project

stakeholders to deliver the system. Furthermore, FDD

includes the roles, artifacts, goals, and timelines needed in

a project [8]. Unlike some other agile methodologies, FDD

claims to be suitable for the development of critical
systems [8].

 FDD consists of five sequential processes as shown in

Fig. 3.The iterative part of the FDD processes i.e. design

and build supports agile development with quick

adaptations to late changes in requirements and business

needs. Typically, an iteration of a feature involves a one to

three week period of work for the team.

All the five processes of FDD is described according to

Palmer [8].

Fig 3. Processes of FDD

Develop an Overall Model
When the development of an overall model begins, the

domain experts are already aware of the scope, context

and requirements of the system to be built [8]. The

documented requirements such as use cases or functional

specifications already exist at this stage. However, FDD

does not explicitly address the issue of gathering and
managing the requirements. The domain experts present a

so called "walkthrough" in which the team members and

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5951 238

the chief architect are informed of the high-level

description of the system. The overall domain is further

divided into different domain areas and a more detailed

walkthrough is held for each of them by the domain

members. After each walkthrough, a development team
works in small groups in order to produce object models

for the domain area at hand. The development team then

discusses and decides upon the appropriate object models

for each of the domain areas. Simultaneously, an overall

model shape is constructed for the system [8].

Build a Features List
The walkthroughs, object models and existing requirement

documentation give a good basis for building a

comprehensive features list for the system being

developed. In the list, the development team presents each
of the client valued functions included in the system. The

functions are presented for each of the domain areas and

these function groups consist of so-called major feature

sets. In addition, the major feature sets are further divided

into feature sets. These represent different activities within

specific domain areas. The feature list is reviewed by the

users and sponsors of the system for their validity and

completeness.

Plan by Feature
Planning by feature includes the creation of a high-level

plan, in which the feature sets are sequenced according to
their priority and dependencies and assigned to Chief

Programmers. Furthermore, the classes identified in the

"developing of an overall model" process are assigned to

individual developers, i.e. class owners. Also schedule and

major milestones may be set for the feature sets.

Design by Feature and Build by Feature
A small group of features is selected from the feature

set(s) and class owners form the feature teams needed for

developing the selected features. All the selected features

are produced by the design by feature and build by feature
iterative processes. In this one iteration takes from a few

days to a maximum of two weeks. There can be multiple

feature teams concurrently designing and building their

own set of features which include tasks such as design

inspection, coding, unit testing, integration and code

inspection for different features. After a successful

iteration, the completed features are promoted to the main

build while the iteration of designing and building begins

with a new group of features taken from the feature set.

IV. CONCLUSION

Agility, for a software development organization, is the

power of software to choose and react expeditiously and

fittingly to various changes in its surround and to the

demands imposed by this surround. An agile process is

one that readily embraces and supports this degree of

flexibility. In this paper a study on three of the commonly

used agile methodologies i.e. Extreme Programming,

SCRUM and Feature Driven Development is done.

ACKNOWLEDGMENT

The author is thankful to all the authors whose references

are included and especially to Pekka Abrahamsson, Outi

Salo and Jussi Ronkainen.

REFERENCES

[1] Information and Software Technology, 2008, vol. 50, pp. 833-859.

[2] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,

Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Humt,

A., Jerries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,

Schwaber, K., Sutherland, J., Thom, D.: Manifesto for agile

software development. Website (2001) http://agilemanifesto.org/.

[3] Beck, Kent; et al. (2001). "Principles behind the Agile Manifesto".

Agile Alliance. Archived from the original on 14 June 2010.

Retrieved 6 June 2010

[4] T. Dyba, “Improvisation in small software organizations”, IEEE

Software, Vol.17, No. 5, pp. 82–87, 2000.

[5] P. A .Gerfalk, B. Fitzgerald, “Flexible and distributed software

processes: old petunias in new bowls?”, Communications of the

ACM , Vol. 49, No. 10, pp. 27–34, 2006.

[6] S. Nerur, R. Mahapatra, G. Mangalaraj, “Challenges of Migrating

to Agile Methodologies”, Communications of the ACM,Vol. 48,

No. 5, pp. 72–78, 2005.

[7] Schwaber K. and Beedle M., Agile Software Development with

Scrum. Prentice Hall, 2001.

[8] Palmer, S. R. and Felsing, J. M., A Practical Guide to Feature-

Driven Development. Upper Saddle River, NJ, Prentice-Hall, 2002.

[9] M. Aoyama, “ Web-based agile software development”, IEEE

Software, Vol. 15 , No. 6 ,pp. 56–65 , 1998.

[10] Dyba T., and Dingsoyr T., “Empirical Studies and Agile Software

Development: A Systematic Review”, Information and Software

Technology, 2008, Vol. 50, pp. 833-859.

[11] Pekka Abrahamsson, Outi Salo & Jussi Ronkainen,, Agile software

development methods, Review and Analysis, VTT publications

478.

[12] Beck K. “Embracing change with Extreme programming”, IEEE

computer, Vol. 32, No.10, pp. 70-77, 1999a.

[13] Schwaber, K. and Beedle, M., Agile Software Development with

Scrum. Upper Saddle River, NJ, Prentice-Hall, 2002.

[14] Schwaber, K. Scrum Development Process. OOPSLA'95

Workshop on Business Object Design and Implementation.

Springer-Verlag, 1995.

http://agilemanifesto.org/

